

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PyCMake 0.1 documentation

Welcome to pycmake’s documentation!

Contents:

	Introduction

	Installation
	Requirements

	Installation

	CMake
	Compilers

	Flags

	Project
	Create a project

	CMake Variables

	Targets

	Files and Directories

	Preprocessor Definitions

	Dependencies
	Externals

	Links

	CMakeLists
	What you need to do before

	Create CMakeLists

	pycmake package
	Module contents

	Submodules

	pycmake.cmake

	pycmake.cmakelists

	pycmake.compiler

	pycmake.externals

	pycmake.flags

	pycmake.project

	pycmake.supported

	pycmake.variables

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyCMake 0.1 documentation

Introduction

This project is a Python 3 module to create, manage and build CMake projects.

WARNING: currently, PyCMake still under development and may not be install on production server.

You’ll can make project, add library and executable, create and choose compilers, add variables, dependencies and most features as possible.

Finally, you’ll can write your CMakeLists.txt and build it.

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyCMake 0.1 documentation

Installation

Requirements

Actually, PyCMake only require a version of Python up to 3.0. this library is not test under Python 2.7 and above, but should work.

Installation

PyCMake with pip

Available as soon as possible

PyCMake Release

Available as soon as possible

PyCMake from Source

Simply clone repos of PyCmake [https://github.com/algorys/pycmake] and run setup.py:

sudo setup.py install

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyCMake 0.1 documentation

CMake

Before beginning to create a project and try to compile it with PyCmake, you must create a CMake object. He will used to manage common features and can receive your compilers.

cmake = CMake()

Now you can add set global settings of CMake:

min_required = 'VERSION 3.5'
policy = 'VERSION 3.5'
cmake.add_settings(min_required, policy)

Compilers

You must add at least one compiler to get PyCmake functional. Then you can add other compilers, flags for each of them and manage global settings of CMake.

Valid compiler_id are currently:

	GCC or G++

	CLANG or CLANG++

	MSVC or MSVC++

Let’s create a Compiler for GNU:

compiler = Compiler()
compiler_id = 'G++'
compiler.create('G++-5', 'C++', compiler_id, 5, '/usr/bin/g++-5')

Now that the compiler was created, we can add it to our cmake object. CMake object has method and members for each supported compiler:

cmake.gnu_compiler(compiler)
Or for Clang:
cmake.clang_compiler(compiler)

The advantage with the object Compiler is that you can easily use create() to create a new one and add it to our object CMake. But take care, it will replace the previous values.

Flags

Your compiler can receive flags to ensure your project compiles as needed. You need object Flags to make it:

gcc_flags = Flags('G++-5 Flags', '-std=c++11', 'Wall', '-GL')
cmake.flags_to_compiler(compiler_id, gcc_flags)

As you can see, flags name is not important, that’s compiler_id who make the link between your flags and your compilers.

Now your CMake is ready to receive a Project.

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyCMake 0.1 documentation

Project

Create a project

The Project is the heart of your script. He will contains all information about your project sources, dependencies, links, definitions, ...

Initialise object and create your project:

project = Project()
language = 'C++'
project.create('myLib', language)

Currently, only C and C++ are valid language. During create(), PyCMake create a variable named PROJECT_NAME (See below).

CMake Variables

To facilitate read and management of your project, PyCMake will help you to generate variable you can use after along the process.

There is some default variables who will be created and you can create your own if needed.

Predefined Variables

	PROJECT_NAME: when the create() method is called, name of your project is automatically associated with this variable.

	PROJECT_DIR: you can use project_dir() method to set this variable. WARNING: you have to indicate a relative path from your future CMakeLists.txt location ! Cause this variable will define absolute path from this.

	OUTPUTS: you have 3 methods for each type of target. You have to give the path for each.
	library_output_path()

	archive_output_path()

	executable_output_path()

Here is a way to use it:

project.variables.library_output_path('${PROJECT_DIR}/build')

Feel free to use existing variables in your paths.

Custom Variables

You can also add custom variables to your project. Simply type the following:

project.variables.add('TEST_DIR', '${PROJECT_DIR}/src/tests')

You can add as many variables as you want or replace existing ones. The Project object provides the get_variable() method to access any variable created.

Targets

Now that your project is defined, you must add target(s) to build. There is 2 types of targets : libraries and executables.

Libraries

You have to precise the true name of your library. She can be shared or static.

For a shared library called libmylib.so (or mylib.dll on Windows):

project.add_library_target('mylib', shared=True)

For a static library called libmylib.a (or mylib.lib on Windows):

project.add_library_target('mylib')

The shared option is false by default.

Executables

You have to give the true name of your executable. For an executable called myexe (or myexe.exe on Windows):

project.add_executable_target('myexe')

That’s all.

Files and Directories

Note: these methods will be reworked in the future to facilitate the addition of files and folders.

There are two distinct methods in PyCMake to add folders or files to your target. Each must receive a tuple of them to get it work. They can be append to your PROJECT_DIR variable or not.

For folders, you can set recursive mode or not.

Here is a full example for a library and his folders:

project.add_library_target('mylib', shared=True)
project.add_source_directories('dir_cpp',
 'mylib',
 True,
 False,
 '../../lib/src/*.cpp',
 '../../lib/src/test/*.cpp',
)
project.add_source_directories('dir_header',
 'mylib',
 True,
 False,
 '../../lib/src/includes/*.h',
 '../../lib/src/test/includes/*.h',
)

And here, for add specific files:

project.add_source_files('cpp_files',
 'mylib',
 True,
 '../../main.cpp',
 '../../graphics.cpp',
)
project.add_source_files('headers_files',
 'mylib',
 True,
 '../../stdafx.h',
 '../../main.h',
 '../../graphics.h',
)

PyCMake then associate these files to the target to compile.

Preprocessor Definitions

If your project need specific definitions for preprocessor, you can set it like that:

project.preprocessor_definitions('UNICODE', '_UNICODE', 'MYLIB_EXPORTS')

Easy and simple.

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyCMake 0.1 documentation

Dependencies

Externals

CMake offers many way to add dependencies to your project. PyCmake use Externals object to manage this:

depends = Externals()

Currently, PyCMake supports add_subdirectory for other directory with CMakeLists projects. And you can link_directories to link binaries already built:

depends.add_subdirectory('zlib', '${PROJECT_DIR}/external/zlib/', '${PROJECT_DIR}/build/zlib')
depends.add_link_directories(('${PROJECT_DIR}/external/g3log')

Links

You can link your project with your dependencies. Simply tell which target you want to link with them. If the target exists in your project, PyCmake will link them:

depends.target_link_libraries('mylib', 'zlib', 'g3log')
project.add_dependencies(depends)

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyCMake 0.1 documentation

CMakeLists

What you need to do before

You must have an instance of CMake and Project create and configured with your requirements to use CMakeLists.

Create CMakeLists

Once your project is properly configured, you can create your CMakeLists.txt. This file is needed by CMake (and of course by PyCMake too) to compile your project.

Create a CMakeLists object:

cmakelist = CMakeLists()

Initialize file and write it:

PyCmake will try to create folders if not exists.
cmakelist.init_file('./platform/cmake')
cmakelist.write_cmakelists(cmake, project)

Normally, you have a CMakeLists.txt ready to use, created in the specified folder !

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PyCMake 0.1 documentation

pycmake package

Module contents

PyCMake

This module is a tool for CMake to help create, manage and build CMake Projects.

Submodules

pycmake.cmake

	
class pycmake.cmake.CMake

	Bases: object

CMake is root module of PyCMake. He manage all to provide CMake project.

	
add_settings(min_required, policy)

	Set cmake_minimum_required and cmake_policy.

	Parameters:	
	min_required (str) – the cmake version minimum required.

	policy (str) – the policies of project.

	
clang_compiler(compiler)

	Add a Clang Compiler to CMake.

	Parameters:	compiler (Compiler) – Clang Compiler to add. Must be created before.

	
flags_to_compiler(compiler_id, flags)

	Add Flags to a specific compiler.

	Parameters:	
	compiler_id (str) – supported compiler_id.

	[GCC or G++],

	[CLANG or CLANG++],

	[MSVC or MSVC++]

	flags (Flags) – Flags to add to the compiler.

	
gnu_compiler(compiler)

	Add a GNU Compiler to CMake.

	Parameters:	compiler (Compiler) – Gnu Compiler to add. Must be created before.

	
msvc_compiler(compiler)

	Add a MSVC Compiler to CMake object.

	Parameters:	compiler (Compiler) – MSVC Compiler to add. Must be created before.

pycmake.cmakelists

	
class pycmake.cmakelists.CMakeLists

	Bases: object

CMakeLists create and generate CMakeLists.txt.

	
init_file(path)

	Create folders and CMakeLists.txt.

	Parameters:	path (str) – path where to create CMakeLists.txt.

	
write_clang_flags(clang_flags)

	Write Flags for compilers.

	Parameters:	clang_flags (dict) – Flags for Clang compiler.

	
write_cmakelists(cmake, project)

	Write CMakeLists.txt from the CMake data.

	Parameters:	
	cmake (CMake) – CMake object,
with Compiler and Flags.

	project (Project) – Project object with his target,
sources and Externals.

	
write_dependencies(dependencies)

	Write dependencies of project.

	Parameters:	dependencies (Externals) – Dependencies of the project.

	
write_directory_files(sources_dirs)

	Write different variables for directories of project.

	Parameters:	sources_dirs (dict) – Sources Directories.

	
write_global_settings(settings)

	Write settings of CMake.

	Parameters:	settings (dict) – global settings of CMake

	
write_gnu_flags(gnu_flags)

	Write Flags for compilers.

	Parameters:	gnu_flags (dict) – Flags for GNU compiler.

	
write_info()

	Write global informations.

	
write_links(dependencies)

	Write Links for dependencies of project.

	Parameters:	dependencies (Externals) – Dependencies of the project.

	
write_msvc_flags(msvc_flags)

	Write Flags for compilers.

	Parameters:	msvc_flags (dict) – Flags for MSVC compiler.

	
write_project_data(language, definitions)

	Write project and definitions.

	Parameters:	
	language (str) – language of project.

	definitions (tuple) – definitions of project.

	
write_targets(project)

	Write Targets and add sources Variables.

	Parameters:	project (Project) – CMake Project.

	
write_title(title)

	

	
write_variables(project)

	Write Project variables and data.

	Parameters:	project (Project) – project to build.

pycmake.compiler

	
class pycmake.compiler.Compiler

	Bases: object

Compilers define a compiler.

	
static check_compiler_options(language, compiler_id)

	Check if compiler is valid. Used for each create().

	Parameters:	
	language (str) – language of compiler (C or CXX)

	compiler_id (str) – compiler_id (GCC, G++, CLANG, CLANG++, MSVC or MSVC++)

	
create(name, language, compiler_id, version, executable)

	Create a compiler.

	Parameters:	
	name (str) – name of compiler.

	language (str) – language of compiler

	compiler_id (str) – compiler (GCC, G++, CLANG, CLANG++, MSVC or MSVC++)

	version (int or float) – version of the compiler.

	executable (str) – full path to the executable.

pycmake.externals

	
class pycmake.externals.Externals

	Bases: object

Externals contains all dependencies related to project.

	
add_link_directories(*directories)

	Link with the specified directories.

	Parameters:	directories (tuple) – directories in which the linker will look for libraries.

	
add_subdirectory(subdir_id, source_dir, binary_dir)

	Add one subdirectory to the build.

	Parameters:	
	subdir_id (str) – id of the subdir.

	source_dir (str) – directory in which the source CMakeLists.txt is located

	binary_dir (str) – directory in which to place the output files.

	
target_link_libraries(target, *libraries)

	Link the libraries specified to the associated target.

	Parameters:	
	target (str) – relevant target.

	libraries (tuple) – libraries to link to target.

pycmake.flags

	
class pycmake.flags.Flags(flags_id, general, debug='', release='')

	Bases: object

Flags for general, debug and release compilations

	
debug = None

	

	Parameters:	debug (str) – flags for debug target

	
flags_id = None

	

	Parameters:	flags_id (str) – id of flags

	
general = None

	

	Parameters:	general (str) – flags for all targets.

	
release = None

	

	Parameters:	release (str) – flags for release target.

pycmake.project

	
class pycmake.project.Project

	Bases: object

CMakeProject contains all data related to project.

	
add_dependencies(dependencies)

	Add some dependencies to project.

	Parameters:	dependencies (Externals) – dependencies of the project, like subdirectories or external link.

	
add_executable_target(name)

	Add an executable target.

	Parameters:	name (str) – name of the executable.

	
add_library_target(name, shared=False)

	Add a Library target.

	Parameters:	
	name (str) – the library name.

	shared (bool) – shared library or not.

	
add_source_directories(dirs_id, target, recursive, from_proj, *sources)

	Add one or many sources directories to project.

	Parameters:	
	dirs_id (str) – id of the directories.

	target (str) – add directories to a specific target.

	recursive (bool) – recursive or not

	from_proj (bool) – if True, append to ${PROJECT_DIR} variable, see project_dir()

	sources (tuple) – source directories to add.

	
add_source_files(files_id, target, from_proj=False, *files)

	Add one or many sources files to project.

	Parameters:	
	files_id (str) – id of the files.

	target (str) – add files to a specific target.

	from_proj (bool) – add ${PROJECT_DIR} to source files if True.

	files (tuple) – files to add.

	
add_version(major, minor, patch, tweak=0)

	

	Parameters:	
	major (int) – number of Major Version

	minor (int) – Number of Minor Version

	patch (int) – Number of Patch version

	tweak (int) – Number of Tweak version.

	
create(name, language)

	Create a project.

	Parameters:	
	name (str) – name of the project.

	language (str) – language of the project.

	
get_variable(name)

	Returns the contents of the specified variable.
Will look into Variables

	Parameters:	name (str) – the name of the desired variable.

	Returns:	a variable of the project.

	Return type:	dict

	
preprocessor_definitions(*definitions)

	Add Preprocessor Definitions.

	Parameters:	definitions (tuple) – add preprocessor definitions to project: FOO BAR

pycmake.supported

This file is only to tell what’s compatible or not with PyCMake.

pycmake.variables

	
class pycmake.variables.Variables

	Bases: object

Variables hold all project variables

	
add(name, value, option='set')

	Add a variable.

	Parameters:	
	name (str) – Name of the variable.

	value (str) – Value of variable.

	option (str) – option for variable: ‘set’ or ‘get_filename_component’

	
archive_output_path(path)

	Add ARCHIVE_OUTPUT_PATH variable for Static libraries.

	Parameters:	path (str) – path where build Static libraries.

	
executable_output_path(path)

	Add EXECUTABLE_OUTPUT_PATH variable for executables.

	Parameters:	path (str) – path where build executables.

	
library_output_path(path)

	Add LIBRARY_OUTPUT_PATH variable for Shared libraries.

	Parameters:	path (str) – path where build Shared libraries.

	
project_dir(path)

	Defines the main project directory in a variable named: PROJECT_DIR.

	Parameters:	path (str) – relative path from CMakeLists.txt.

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PyCMake 0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pycmake	

 	
 	
 pycmake.cmake	

 	
 	
 pycmake.cmakelists	

 	
 	
 pycmake.compiler	

 	
 	
 pycmake.externals	

 	
 	
 pycmake.flags	

 	
 	
 pycmake.project	

 	
 	
 pycmake.supported	

 	
 	
 pycmake.variables	

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PyCMake 0.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | T
 | V
 | W

A

 	

 	add() (pycmake.variables.Variables method)

 	add_dependencies() (pycmake.project.Project method)

 	add_executable_target() (pycmake.project.Project method)

 	add_library_target() (pycmake.project.Project method)

 	add_link_directories() (pycmake.externals.Externals method)

 	add_settings() (pycmake.cmake.CMake method)

 	

 	add_source_directories() (pycmake.project.Project method)

 	add_source_files() (pycmake.project.Project method)

 	add_subdirectory() (pycmake.externals.Externals method)

 	add_version() (pycmake.project.Project method)

 	archive_output_path() (pycmake.variables.Variables method)

C

 	

 	check_compiler_options() (pycmake.compiler.Compiler static method)

 	clang_compiler() (pycmake.cmake.CMake method)

 	CMake (class in pycmake.cmake)

 	

 	CMakeLists (class in pycmake.cmakelists)

 	Compiler (class in pycmake.compiler)

 	create() (pycmake.compiler.Compiler method)

 	

 	(pycmake.project.Project method)

D

 	

 	debug (pycmake.flags.Flags attribute)

E

 	

 	executable_output_path() (pycmake.variables.Variables method)

 	

 	Externals (class in pycmake.externals)

F

 	

 	Flags (class in pycmake.flags)

 	flags_id (pycmake.flags.Flags attribute)

 	

 	flags_to_compiler() (pycmake.cmake.CMake method)

G

 	

 	general (pycmake.flags.Flags attribute)

 	get_variable() (pycmake.project.Project method)

 	

 	gnu_compiler() (pycmake.cmake.CMake method)

I

 	

 	init_file() (pycmake.cmakelists.CMakeLists method)

L

 	

 	library_output_path() (pycmake.variables.Variables method)

M

 	

 	msvc_compiler() (pycmake.cmake.CMake method)

P

 	

 	preprocessor_definitions() (pycmake.project.Project method)

 	Project (class in pycmake.project)

 	project_dir() (pycmake.variables.Variables method)

 	pycmake (module)

 	pycmake.cmake (module)

 	pycmake.cmakelists (module)

 	

 	pycmake.compiler (module)

 	pycmake.externals (module)

 	pycmake.flags (module)

 	pycmake.project (module)

 	pycmake.supported (module)

 	pycmake.variables (module)

R

 	

 	release (pycmake.flags.Flags attribute)

T

 	

 	target_link_libraries() (pycmake.externals.Externals method)

V

 	

 	Variables (class in pycmake.variables)

W

 	

 	write_clang_flags() (pycmake.cmakelists.CMakeLists method)

 	write_cmakelists() (pycmake.cmakelists.CMakeLists method)

 	write_dependencies() (pycmake.cmakelists.CMakeLists method)

 	write_directory_files() (pycmake.cmakelists.CMakeLists method)

 	write_global_settings() (pycmake.cmakelists.CMakeLists method)

 	write_gnu_flags() (pycmake.cmakelists.CMakeLists method)

 	write_info() (pycmake.cmakelists.CMakeLists method)

 	

 	write_links() (pycmake.cmakelists.CMakeLists method)

 	write_msvc_flags() (pycmake.cmakelists.CMakeLists method)

 	write_project_data() (pycmake.cmakelists.CMakeLists method)

 	write_targets() (pycmake.cmakelists.CMakeLists method)

 	write_title() (pycmake.cmakelists.CMakeLists method)

 	write_variables() (pycmake.cmakelists.CMakeLists method)

 Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		PyCMake 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Matthieu Estrada.
 Created using Sphinx 1.3.5.

_static/down.png

